
Supplementary Materials and Methods

Collecting locality data 
We list here additional detail on collecting times and localities. GPS coordinates are indicated in 
decimal degrees. We collected species in the U.S.A. in the spring and summer of 2017 and 
2018 and in Mexico in June 2018.  

In the U.S.A., we collected Acris blanchardi from April–June 2017 and May–June 2018 
around Stillwater, Oklahoma, USA. Specific localities included Teal Ridge wetland (36.1005, -
97.0804), Sanborn Lake (36.1561, -97.0781), and a residential pond (36.0279, -97.0483). We 
collected Pseudacris fouquettei and P. crucifer in March 2018 along the South Smokehouse 
Trail near Farmington, Arkansas (36.0411; -94.2211). We also collected P. crucifer on Kessler 
Mountain (36.0404, -94.2212) near Fayetteville, Arkansas, and P. fouquettei on Kalamazoo 
Road (35.3682, -93.6937) near Paris, Arkansas, in April 2017. We found Hyla cinerea and Hyla 
avivoca calling in the Duck Observation Pond (33.9533, -94.7028) in Little River National 
Wildlife Refuge near Idabel, Oklahoma, in May 2017 and April 2018. Finally, we collected Hyla 
arenicolor north of Fort Davis, Texas, in August 2017 and 2018 along Boy Scout Road 
(30.8134, -103.9281).  

In Mexico, we found four species in La Sierra Juárez near La Esperanza, Municipality 
Santiago Comaltepec, Oaxaca. We collected Charadrahyla nephila on large branches 
overhanging three streams intersecting roads leading out of town (17.6528, -96.3882; 17.65082, 
-96.38905; 17.6233, -96.3658). Similarly, we collected Exerodonta abdivita on vegetation along 
a stream northwest of town (17.6495, -96.3858) and Ptychohyla zophodes on vegetation in an 
open pasture northeast of town (17.6305, -96.3653). We collected Smilisca cyanosticta in 
temporary ponds along the road near the Rio Bobo (17.65703; -96.39538). Finally, we collected 
two species in La Sierra Sur, Oaxaca. We found both Smilisca baudinii and Tlalocohyla smithii 
in a temporary breeding pond along El Zapote-Copalita highway between Pluma Hidalgo and 
Santa María Huatulco (15.8687, -96.3852). 

Justification for rate of body-temperature change 
Many methods exist for changing an amphibian’s body temperature from ambient to test 
temperature. Such methods have included immersing animals in water and changing 
temperature as fast as 0.5ºC per minute (Gvoždík and Van Damme, 2006) or as slow as 4ºC 
per hour (Wilson, 2001). Others have placed a box with (room-temperature) frogs and some 
water into a thermal chamber at the test temperature for 1h prior to data collection (John-Alder 
et al., 1988). Still others have immediately immersed animals in water at the test temperature 
from 5–30 minutes (John-Alder et al., 1989; Whitehead et al., 1989). Thus, a specific method 
and rate of change have not been consistently used in previous studies of thermal performance 
curves in amphibians. On one hand, changing temperature at a slow rate (e.g. 4ºC per hour) 
allows an organism to gradually adjust to the test temperature, more likely avoiding thermal 
shock. On the other hand, changing body temperature at a fast rate (immediate immersion at 
the test temperature) may reduce stress in animals when tested at extreme temperatures (i.e. 
reducing the total exposure time to those temperatures).  

In this study, we used immediate immersion of frogs in water at the test temperature, 
leaving them in the water until their bodies achieved that temperature, usually for 5–30 minutes. 
The timing depended on the size of the frog, as larger frogs took more time to reach the 
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experimental temperature (verified with an infrared thermometer prior to data collection; see 
below). To achieve body temperatures at or below 20°C, we placed frogs in a circulating water 
bath in a makeshift thermal chamber consisting of a chest freezer controlled by an Inkbird itc-
308 thermocouple. The thermocouple and immersion circulator ensured that the temperature of 
the water bath was within 0.5°C of the desired temperature (see below; Wilson and Franklin, 
2000). To achieve temperatures above 20°C, frogs were placed in a water bath whose 
temperature was only controlled by an immersion circulator, which maintained water within 
0.1°C of the intended temperature. We determined body temperature with an infrared 
thermometer, following previous work on small anurans (Navas et al., 2007). A key advantage 
of infrared thermometers is that they avoid body-temperature change by reducing handling time 
(Navas and Araujo, 2000). They also reduce handling stress relative to inserting cloacal 
thermometers, given that we took temperatures of individuals up to 15 times on days of 
experiments. Because the exact experimental temperature was difficult to achieve for each frog 
during every trial, we collected data when body temperatures were ± 1°C of the test 
temperature. We later used the exact measured temperature for statistical analyses.  

Before fully implementing this procedure, we wanted to ensure our results were robust to 
the rate of temperature change. So we conducted a preliminary test to determine whether the 
rate of body temperature change (i.e. gradual or rapid) to a given temperature has an effect on 
an organism’s performance at that temperature. We adjusted the body temperature of five Acris 
blanchardi to two extreme temperatures (8°C and 32°C) using two different methods. For 
gradual change, we changed water temperature 3°C per hour. For rapid change, we put frogs 
directly in water of the desired temperature for 5–10 minutes, as this was among the smallest of 
our species and individuals rapidly changed temperature. We used the same individuals with 
both methods, and for both experimental temperatures, then collected jumping data. We 
compared peak jumping velocity at a given temperature reached via the two methods of 
temperature change.  

We found no significant difference between peak jumping velocities after gradually or 
rapidly changing body temperature, neither to 8°C (paired T-test, ts = 0.46, df = 4, P = 0.476), 
nor to 32°C (paired T-test, ts = –0.75, df = 4, P = 0.656). However, we did anecdotally observe 
increased stress at the slow ramping of high temperature, as two individuals died shortly after 
the high temperature treatment. Thus, we used the rapid procedure to facilitate data collection, 
reduce mortality, and increase quality of our resulting data. Note that we did not have additional 
high-temperature associated mortality after implementing the rapid procedure for data collection 
across all species. Moreover, our adopted procedure did not result in reduced performance over 
time (next section), further suggesting that our experimental animals did not experience thermal 
shock associated with drastic changes in temperature. 

Accounting for potentially reduced performance over time 
Performance may gradually decline when individuals are measured over the course of a week 
(Zug, 1985). Thus, we tested each frog at 20°C at the beginning of trials and then again at 20°C 
after all other experimental temperatures (Wilson, 2001). Some individuals performed more than 
10% better at the end of trials, suggesting that they could also randomly perform more than 10% 
worse at the end. To account for this possibility, for each individual we subtracted its peak 
performance at 20°C at the end of trials from its peak performance at 20°C at the beginning of 
trials. We then calculated a 95% confidence interval around the mean of this metric across 
individuals of each species. Individuals that fell below the lower limit of the interval (i.e. 
significantly lower performance at the end than the beginning) were excluded from further 
analysis. Those that fell above the 95% CI were not excluded because they showed 
substantially higher performance at the end of trials, meaning their performance did not decline 
over time. Under this approach, we retained data from all but one individual of Smilisca 
cyanosticta.   
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Potential effects of body size on jumping performance 
Our taxa varied in body size, which ranged across species from Tlalocohyla smithii (0.84g; n = 
1) to Smilisca baudinii (mean ± sd = 18.12 ± 2.00 g). Size also varied within species (e.g. 3.96–
12.90 g in Hyla cinerea). Previous comparative studies of anuran jumping have shown that 
absolute jumping performance (e.g. velocity in meters per second; distance in meters) can 
increase with body size (Emerson, 1978; Zug, 1978; Gomes et al., 2009). This pattern is 
stronger across than within species (James et al., 2007). Thus, size variation in our dataset may 
have affected differences among species and individuals in absolute jumping velocity. However, 
our goal in this paper was to examine species differences in the temperature at which they 
performed best, and not the actual value of jumping velocity attained at those temperatures. 
Thus, we followed previous studies and standardized jumping velocity data to the peak absolute 
velocity for each individual (John-Alder et al., 1988; Navas et al., 2008; Herrel and Bonneaud, 
2012). This ensured that we could calculate thermal performance curves across individuals 
within species. It also allowed us to compare temperatures of peak performance across species. 

Considering alternative methods for characterizing thermal performance curves 
Many methods have been proposed for estimating species’ thermal performance curves 
(TPCs). Some methods have been criticized as biologically unrealistic (e.g. Bulté and Blouin-
Demers, 2006), and the exact optimal parameterization is still contested (e.g. Woods et al., 
2018; Rezende and Bozinovic, 2019). For our approach, we followed Angilletta (2006), who 
suggested comparing phenomenological regression models using AICc. While more 
mechanistic models (e.g. Adams et al., 2017; Rezende and Bozinovic, 2019) have some 
desirable properties, the overall functional form of such curves is similar to those we used (i.e. a 
single-peaked curve crossing 0 at low and high temperatures). Moreover, a key analytical 
advantage of models we did not consider is that they allow for curve asymmetry with relatively 
few parameters. Given that we sampled the cold side of our species’ TPCs, including 
asymmetry above peak performance temperature is unlikely to be strongly supported by our 
data. Thus, we do not expect our results would greatly differ with this approach or others that 
are similar.   

Additional performance thresholds 
In this paper we determined thermal performance curves in jumping, then used the lower 
temperature at which species drop to 80% of peak performance (L80) to quantify the lowest 
temperature at which they can still perform well. We used this threshold due to precedent in 
previous studies (John-Alder et al., 1988; Wilson, 2001). However, we also tested different 
performance thresholds to determine the sensitivity of our results to arbitrarily choosing 80% as 
“high performance.” We considered thresholds at 70 and 90% of peak performance, as well as 
the temperature at which performance peaked. In most cases, the 70 and 80% thresholds 
occurred within our data (Figs. 3, 4). In Smilisca cyanosticta, however, all jumping data were 
above 80% of peak performance. Thus, for this species we extended the regression line beyond 
our data to reach an estimated L80. For five additional species, we extended regression lines to 
reach the estimated L70. We found that all thresholds generated quantitatively similar results in 
our evolutionary analyses (Table S2). Thus, we only present results based on L80 in the main 
manuscript.  

We also note that in our evolutionary analyses, we only used the lower bounds of peak 
performance instead of the full thermal performance breadth, whereas the latter is often used in 
studies of thermal performance curves. We concentrated on the lower bounds for two reasons. 
First, the lower end of the thermal performance curve was most relevant to colonization of the 
temperate zone. Comparative studies of terrestrial ectotherms show that the upper (i.e. hot) 
bounds of both tolerances and thermal performance curves vary little with latitude (Snyder and 
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Weathers, 1975; Sunday et al., 2011; Sunday et al., 2019) or when comparing temperate and 
tropical species (John-Alder et al., 1988; van Berkum, 1988). Second, the highest temperature 
at which we tested frogs was 35°C, which we chose based on previous studies in anurans 
(John-Alder et al., 1988; Whitehead et al., 1989; Wilson, 2001; Herrel and Bonneaud, 2012). 
While this temperature was higher than the peak performance temperature in most species 
(Figs. 3, 4), it only marked a decline to 80% of peak performance in one of 12 species (Figs. 3, 
4). This limited our analysis of the full breadth of performance (Huey and Stevenson, 1979), 
given that extrapolating curves beyond observed data can lead to large prediction errors (Sokal 
and Rohlf, 1995). Nonetheless, we do not expect our focus on L80 (rather than full breadth) to 
impact our results, as we found that the cold portion of performance breadth (i.e. the difference 
between the temperature of peak performance and L80) also gave nearly identical results as 
L80 alone in our evolutionary analyses (Table S2).  

Internal node states for OU model-fitting 
The multiple-optima OU models (OU2 and OU3) required specifying states of internal nodes. 
However, here we studied only 12 of 197 species of the Middle American clade (Faivovich et al., 
2018; AmphibiaWeb, 2021), and ancestral-state estimates can be highly inaccurate with such 
sparse taxon sampling (Salisbury and Kim, 2001). Thus, for OU2 we used previously estimated 
ancestral areas for the entire Middle American clade of hylid frogs (Moen et al., 2009), which 
are consistent with biogeographic analyses on all anurans (Pyron, 2014). For OU3, we overlaid 
the ancestral-area estimates of Moen et al. (2009) with the ancestral elevation estimates of 
Smith et al. (2007), both estimated using the same phylogeny. Smith et al. (2007) found that 
most of the internal nodes in our tree were above 1000m, which we considered high elevation. 
The key exceptions were the nodes of three clades, all recovered as <1000m: the clade 
including Hyla (temperate), the clade including Smilisca and Tlalocohyla (tropical), and the 
common ancestor of these two clades (tropical). Moreover, both colonizations of temperate 
North America by hylids are inferred to have happened at low elevations along the coasts 
(Smith et al., 2007; Moen et al., 2009), and the sister group to the Middle American clade is 
Lophiohylini, a lowland tropical group (Wiens et al., 2010; Wiens et al., 2011; Pyron, 2014). 
Thus, we designated those nodes as lowland tropical (Fig. 2). 

Phylogenetic comparative methods with and without standard errors  
Recent studies have highlighted the potential importance of explicitly accounting for intraspecific 
variation in species means when doing phylogenetic comparative analyses (Ives et al., 2007; 
Revell and Reynolds, 2012; Silvestro et al., 2015). However, because we derived our L80 
values from curves, we were unable to calculate typical standard errors of the L80 species’ 
values. Thus, we tested models of CTmin evolution both with and without standard errors to 
roughly examine the potential effect of excluding intraspecific variation on our results for L80. 
We found nearly identical results when including and excluding standard errors (Table S4). 
Thus, we expect that our L80 results were largely robust to our exclusion of measures of 
intraspecific variation. 

Testing power and Type-I error with parametric bootstrapping 
We tested the power of our data to distinguish the models we compared in this paper. 
Moreover, we examined the potential for Type-I error rates (i.e. falsely rejecting a simpler model 
when it is true). In testing OU models, power and error rates are influenced by both species 
number (sample size) and empirical parameter estimates (effect size; Beaulieu et al., 2012; 
Boettiger et al., 2012; Ho and Ané, 2013, 2014; Cressler et al., 2015). To estimate both error 
and power, we used parametric bootstrapping to simulate data and compare pairs of models 
(Boettiger et al., 2012).  

Journal of Experimental Biology: doi:10.1242/jeb.243292: Supplementary information

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

4



Parametric bootstrapping for estimating 95% confidence intervals of parameters is well 
developed in the R packages ouch (version 2.14-1; Butler and King, 2004, King and Butler, 
2009) and OUwie (version 2.6; Beaulieu et al., 2012). For model comparison, Boettiger et al. 
(2012) developed the package pmc to directly compare models with parametric bootstrapping. 
pmc (version 1.0.4) allows users to implement just a single function to test models with ouch. 
However, no analogous package or function yet exists for OUwie. To implement a similar 
analysis, users must simulate trait evolution in OUwie, then write their own code to process the 
simulations, fit models, and calculate statistical properties. The advantage of OUwie over ouch 
is that the former gives users more flexibility in model-fitting and assumptions are more explicit 
(see discussion in OUwie’s vignette, “New additions as of OUwie 2.1”, found on the package’s 
CRAN website at https://CRAN.R-project.org/package=OUwie). However, simulation in OUwie 
is simpler for some models (complex OU models) than others (Brownian motion, single-optimum 
OU). Therefore, we wrote an original function in R to mimic that of pmc. With this tool we hope 
to encourage more users to implement these simulations into their analyses. We use the 
function in our parametric bootstrapping analyses and more thoroughly detail its use in our 
second R tutorial (Appendix S14). We provide the function in Appendix S5. Both files are 
available on the Dryad Digital Repository (Moen et al., 2021).  

As described by Boettiger et al. (2012), testing comparative models with parametric 
bootstrapping starts with simulating many replicates of trait evolution along a phylogeny. These 
simulations use empirically estimated parameter values for both a focal and an alternative 
model. One then fits both models to both simulated datasets, producing four total model fits for 
each simulation replicate (i.e. focal and alternative models fit to data simulated under the focal 
model, and both fits to data simulated under the alternative). By calculating a test statistic 
comparing the two models (e.g. a likelihood ratio test statistic) for each pair of model fits, two 
distributions of expected test statistics are generated. One reflects the expected test statistics if 
the data were truly generated by the focal model, and the other reflects the expected distribution 
of test statistics if the alternative model generated the data.  

One use of these bootstrapped distributions is to probe the reliability of results by 
determining which scenario is more consistent with the observed test statistic from the data. The 
distributions can also be used to calculate Type-I error rates and statistical power of an 
empirical model comparison. In terms of Type-I error rates, “error” means falsely rejecting the 
simpler model (Sokal and Rohlf, 1995). For example, imagine comparing Brownian motion (BM) 
with a single-optimum OU model (OU1). With parametric bootstrapping, the data are simulated 
under the simpler model (BM), then those data are fit to both the simulating model (BM) and the 
alternative model (OU1). For each simulated dataset, one can statistically compare the models 
with a likelihood ratio test, a common method for comparing the relative support of nested 
models (Edwards, 1972; Posada and Buckley, 2004). The proportion of tests (across simulation 
replicates) that reject the simpler model (BM) is the Type-I error rate, since the data were 
simulated under the simpler model that should not be rejected. Next, to estimate the power of 
the data to reject the simpler model, the data are simulated under the more complex model 
(OU1) and then one similarly compares the support for the two models. The proportion of those 
model comparisons that (correctly) reject the simpler model is the statistical power of the 
dataset. When comparing models of phenotypic evolution, this power reflects both number of 
species (i.e. sample size) and signal in the data for different models (i.e. effect size; Boettiger et 
al., 2012; Ho and Ané, 2013, 2014).  

In this paper, we focus on AICc-based model comparison and parameter estimation, 
rather than hypothesis testing to reject models (Butler and King, 2004; Beaulieu et al., 2012). 
However, here we use parametric bootstrapping to demonstrate how the method can be used to 
estimate the statistical properties of empirical datasets. For CTmin, we compared the temperate-
tropical OU model (OU2) to the next most supported simpler (Brownian motion) and more 
complex (temperate vs. tropical lowland vs. tropical highland; OU3) models (Table 2). For L80, 
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we compared the most supported model (Brownian motion), which was the simplest possible 
model, to the next two more complex models (OU1 and OU2; Table 2). For all simulations, we 
used maximum-likelihood parameter estimates from OUwie to simulate 1000 replicate datasets. 
For each model comparison, we then conducted likelihood ratio tests to calculate Type-I error 
(when data were simulated under the simpler model) and power (when data were simulated 
under the more complex model), as described above. We conducted all simulations and 
subsequent model fits with options for OUwie as described in the main text. The only exception 
was that we fit models without standard errors for species means of CTmin, since OUwie does 
not currently allow input of those errors when simulating trait evolution.  

Parametric bootstrapping revealed strong support for CTmin evolving under the 
temperate-tropical (OU2) model as compared to Brownian motion, which had the second-
highest AICc support in our main analyses (Table 2). Simulations showed that this comparison 
has high power (0.992) and a low Type-I error rate (0.065). Moreover, our empirical likelihood-
ratio test statistic of 12.0 was higher than those from nearly all Brownian motion simulations, 
and it fit well within the distribution resulting from simulating OU2 evolution (Fig. S2A). In 
contrast, simulations showed that our data contain little information to clearly distinguish OU2 
from the OU3 model (Fig. S2B), with moderate power (0.598) but high Type-I error rate (0.268). 
This result is somewhat surprising given the low AICc support for OU3 (Table 2). Yet its 
likelihood suggests that OU3 provides a reasonable improvement in model fit compared to OU2 
(Table 2). Together, these results indicate that the low AICc weight for OU3 largely stems from 
the high AICc penalty for the additional optimum in OU3 relative to its improvement in model fit. 
Nevertheless, in both OU2 and OU3, lineages that colonized the temperate zone show a lower 
optimum for CTmin. What remains unclear is whether tropical highland and lowland lineages are 
also different.  

Our results for L80 showed a low ability to distinguish models in general (Fig. S2C,D). 
Type-I error rates were low when comparing Brownian motion to both OU1 and OU2 (0.030 and 
0.079, respectively), but power to reject the simpler model when false was poor (OU1 = 0.129; 
OU2 = 0.250). Moreover, the empirical likelihood-ratio test statistic fell squarely within both 
simulated distributions (Fig. S2C,D). These results are unsurprising, as a good fit to a simple 
model (e.g. BM) means that the estimates of different parameters in more complex models (e.g. 
different adaptive optima) will be very similar. Because those parameter estimates in turn are 
used for simulations to assess power, combining small differences in parameters (e.g. adaptive 
optima) with few species will result in poor ability to distinguish more complex models. This 
situation is no different than in any other type of statistical test: a small effect size will require a 
large sample size to show statistical significance. Overall, L80 seems clearly unassociated with 
colonizing the temperate zone.  
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Fig. S1. Phylogeny of the Middle American clade (MAC), showing how our sampling fit within 
the larger group. As for Fig. 2, we summarized the posterior distribution of Jetz and Pyron 
(2018) for all species for which they had genetic data. Here, that total was 101 of 197 species 
within the MAC. We generated this summary tree in the same way as we described in the main 
text for Fig. 2; the latter is effectively a pruned version of the phylogeny in this figure, in which all 
unsampled taxa were removed. We indicate the species we sampled for this study with black 
text and black branches. Species we did not sample are indicated in gray. All branches are 
supported by Bayesian posterior probabilities of 1.0. Taxonomy follows Faivovich et al. (2018) 
and AmphibiaWeb (2021).  
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Fig. S2. Parametric bootstrapping results. Each panel shows the results of parametric 
bootstrapping of each trait and model comparison, with the most highly supported model by 
AICc in each comparison indicated with an asterisk. In all cases, the first, simplest model (BM or 
OU2) was used to simulate trait data for the null distributions (light gray) and the second, more 
complex model (OU1, 2, or 3) was used to simulate trait data for the test distribution (dark gray). 
Each distribution represents the likelihood ratios resulting from fitting both models on the 
simulated datasets; distribution overlap is indicated by the darkest gray color. Dashed vertical 
lines indicate the likelihood ratio that would result in rejecting the simpler model in favor of the 
more complex model. Thus, the proportion of the null distributions to the right of these lines 
indicate the probability of incorrectly rejecting the simpler model (i.e. Type-I error rates). The 
proportion of the test distributions to the right of the dashed line indicate statistical power to 
reject the simpler model. The solid vertical lines indicate the empirical likelihood ratios 
calculated from our data. This ratio strongly favors the more complex model when it occurs (1) 
to the right of the dotted line, (2) outside the null (light gray) distribution, and (3) within the test 
distribution (dark gray). This only occurs in (A), given that the simpler model was favored in all 
of our other model comparisons (Table 2). 
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Table S1. Comparison of two models of how jumping performance varies with respect to 
temperature in each species.  

AICc wi 
Species Polynomial Gaussian Polynomial Gaussian 
Acris blanchardi -84.842 -84.619 0.528 0.472 
Pseudacris crucifer -104.903 -104.008 0.610 0.390 
Pseudacris fouquettei -70.711 -70.555 0.519 0.481 
Hyla arenicolor -92.791 -92.150 0.579 0.421 
Hyla avivoca -109.360 -110.505 0.361 0.639 
Hyla cinerea -95.131 -93.927 0.646 0.354 
Charadrahyla nephila -65.132 -66.708 0.313 0.687 
Exerodonta abdivita -83.788 -83.628 0.520 0.480 
Ptychohyla zophodes -66.022 -65.026 0.622 0.378 
Smilisca baudinii -62.666 -58.781 0.875 0.125 
Smilisca cyanosticta -81.882 -81.761 0.515 0.485 
Tlalocohyla smithii 33.527 33.541 0.502 0.498 

AICc = small-sample-size corrected Akaike information criterion. wi = AICc weight of each 
model (within species). For each species, we indicate the optimal model (i.e. lowest AICc and 
highest wi) in bold. 
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Table S2. Evolutionary model comparisons with alternative temperature thresholds for 
peak performance, showing highly similar results across variables.  

 Variable: model ln L AICc wi 
L70: 

Brownian motion -36.376 78.086 0.780 
OU single optimum -35.949 80.897 0.191 
OU2 -35.521 84.756 0.028 
OU3 -35.473 90.946 0.001 

L80: 
Brownian motion -35.342 76.018 0.778 
OU single optimum -34.977 78.953 0.179 
OU2 -34.220 82.154 0.036 
OU3 -32.838 85.677 0.006 

L90: 
Brownian motion -35.242 75.817 0.699 
OU single optimum -34.433 77.866 0.251 
OU2 -34.206 82.126 0.030 
OU3 -31.429 82.857 0.021 

Peak temperature: 
Brownian motion -32.688 70.710 0.822 
OU single optimum -32.891 74.783 0.107 
OU2 -32.884 79.483 0.010 
OU3 -27.972 75.944 0.060 

Breadth: 
Brownian motion -33.192 71.717 0.555 
OU single optimum -31.991 72.983 0.295 
OU2 -30.381 74.475 0.140 
OU3 -29.856 79.712 0.010 

Variables represent the threshold at which we considered peak performance to decline: L70 = 
the lower temperature at which the jumping velocity of a species reached 70% of its peak; L80 = 
the 80% threshold; L90 = the 90% threshold; peak temperature = the temperature of peak 
jumping performance; breadth = the difference between the peak temperature and L80. We 
compared four models, including Brownian motion and three Ornstein-Uhlenbeck (OU) models. 
OU single optimum = one optimal temperature for all species. OU2 = separate temperature 
optima for tropical and temperate lineages. OU3 = separate temperature optima for temperate, 
lowland tropical, and highland tropical lineages. ln L = log-likelihood. AICc = corrected Akaike 
information criterion. wi = AICc model weight. For each variable, we indicate the optimal model 
(i.e. the lowest AICc and highest wi) in bold.  
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Table S3. Comparison of evolutionary modeling results for L80 with and without the 
tropical lowland species Tlalocohyla smithii.  

Model With Tlalocohyla Without Tlalocohyla 
ln L AICc wi ln L AICc wi 

Brownian motion -35.342 76.018 0.778 -32.864 71.229 0.813 
OU single optimum -34.977 78.953 0.179 -32.520 74.469 0.161 
OU2 -34.220 82.154 0.036 -31.841 78.349 0.023 
OU3 -32.838 85.677 0.006 -30.071 82.143 0.003 

We compared four models: Brownian motion, an Ornstein-Uhlenbeck (OU) model with a single 
optimal temperature for all species, an OU model in which temperate and tropical species had 
different optimal temperatures (OU2), and an OU model in which temperate, lowland tropical, 
and highland tropical species all had different temperature optima (OU3). ln L = log-likelihood. 
AICc = corrected Akaike information criterion. wi = AICc weight of a model. For each analysis, 
we indicate the optimal model (i.e. the lowest AICc and highest wi) in bold.  
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Table S4. Comparison of evolutionary modeling results for CTmin both with and without using 
standard errors in the analyses.  

Model With standard error Without standard error 
ln L AICc wi ln L AICc wi 

Brownian motion -24.720 54.941 0.209 -24.745 54.990 0.180 
OU single optimum -25.870 61.170 0.009 -26.016 61.460 0.007 
OU2 -18.888 52.442 0.729 -18.742 52.150 0.744 
OU3 -17.843 57.686 0.053 -17.443 56.885 0.070 

We compared four models: Brownian motion, an Ornstein-Uhlenbeck (OU) model with a single 
optimal temperature for all species, an OU model in which temperate and tropical species had 
different optimal temperatures (OU2), and an OU model in which temperate, lowland tropical, 
and highland tropical species all had different temperature optima (OU3). ln L = log-likelihood. 
AICc = corrected Akaike information criterion. wi = AICc weight of a model. Note that Brownian 
motion is not nested within OU models in the way we estimated them (O'Meara and Beaulieu, 
2014) and so may not necessarily have a lower log-likelihood. For each analysis, we indicate 
the optimal model (i.e. the lowest AICc and highest wi) in bold.  
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