Table S1. The open data policies of journals included in Fig. 2 of the main text. DAS = data availability statement. The implementation date of some policies are not indicated. This information can be difficult to obtain, even from editorial offices who often have little or no record of when policy changes were made.

Journal	Data policy		
J Comp Physiol	Recommended open data except for molecular data (mandatory).		
	DAS = recommended. <u>link</u>		
J Exp Biol	Mandatory open data for high-throughput molecular data and		
	recommended open data for all other data types. Integration of		
	submission system with data deposition in Dryad in 2016. DAS =		
	recommended. <u>link</u>		
J Exp Zool A	Recommended open data and mandatory DAS. <u>link 1</u> , <u>link 2</u>		
Physiol Biochem Zool	Optional open data and DAS. Dryad fees covered by journal. link		
Anim Behav	Recommended open data and DAS. link		
Behav Ecol	Mandatory open data and DAS for all data types since 2016. link		
Behav Ecol Sociobiol	Mandatory open data and DAS for all data types as of 2021. link		
Ethology	Recommended open data and mandatory DAS. link1, link 2		

Table S2. Lists of resources, training materials, and tools for researchers wanting to engage in open and reproducible science.

Resource	Description	
Table 1 in Wittman and Aukema (2020)	Resources to learn about reproducibility and	
	open science	
Table S1 in Buxton et al. (2021)	Resources to aid researchers with data	
	management, open data, and open code	
Table 1 in 'Open Code and Software: a	Resources to learn about code and software	
Primer from UKRN'	sharing	
Other resources in 'Data Sharing: a Primer	Resources to learn about research data	
from UKRN'	management and open data	
Framework for Open and Reproducible	A curated list of over 700 resources on	
Research Training (<u>FORRT</u>)	reproducible research and open science	
Open Scholarship Knowledge Base	A curated list of resources on the 'what,	
	why, and how' of open scholarship	
List of online reproducibility trainings	A Google Spreadsheet with open science	
	resources and training compiled by Malika	
	Ihle (@MalikaIhle on Twitter)	
NBIS Tools for reproducible research	Materials and online course to learn tools	
	for reproducible research including Git,	
	Conda, Snakemake, R Markdown, Jupyter,	
	Docker, Singularity.	

^{*} Useful reproducible research tools that might not be mentioned in the resources above include <u>Stencila</u> for publishing executable research articles and the <u>workflowr</u> R package for project management, reproducibility, collaboration, and results sharing.

Table S3. The number of journal articles identified after each step of the systematic review for research articles contributing to the advancement in our understanding of three paradigms investigating the impacts of climate change on aquatic ectotherms: oxygen- and capacity-limited thermal tolerance (OCLTT), gill-oxygen limitation (GOL), and ocean acidification-driven behavioural changes (OA). The steps involved in the selection process of research articles involved: (1) a forward reference search of journal articles citing foundational papers for each paradigm (citations), (2) removal of duplicates to identify unique citations (unique), (3) use of keywords to identify potentially relevant journal articles (keywords), and (4) manual review of papers to determine their suitability for inclusion in the analysis of open data and code (review).

Paradigm	(1) citations	(2) unique	(3) keywords	(4) review
OCLTT	5,282	3,541	1,100	532
GOL	543	471	270	10
OA	1,413	804	424	186

Table S4. Keywords used to assist with the selection of papers that contribute to advancing our understanding of three paradigms investigating the impacts of climate change on aquatic ectotherms: oxygen- and capacity-limited thermal tolerance (OCLTT), gill-oxygen limitation (GOL), and ocean acidification-driven behavioural changes (OA). The presence of these keywords in a paper's title or abstract led to a manual review of the paper to determine its relevance for an analysis examining the presence of open data or code.

OCLTT	GOL	OA
aerobic scope	aerobic scope	activity
cardiac	gill	alarm
cardiorespiratory	GOL	avoidance
cardiovascular	GOLT	behavior
critical thermal	growth	behavioral
heart rate	mass	behaviour
OCLTT	metabolic rate	behavioural
oxygen and capacity	oxygen demand	choice
oxygen consumption	oxygen limitation	cue
oxygen limitation	oxygen supply	exploration
oxygen limited	oxygen uptake	flume
oxygen uptake	respiratory	GABA
temperature tolerance	size	gabazine
thermal limit	surface area	lateralisation
thermal tolerance		lateralization
thermal limits		olfactory
		swimming

References

Buxton, R., Nyboer, E. A., Pigeon, K., Raby, G. D., Rytwinsky, T., Gallagher, A. J.,
Schuster, R., Lin, H. S., Fahrig, L., Bennett, J. R. et al. (2021). Avoiding wasted research resources in conservation science. *Conservation Science and Practice* 3, e329.
Wittman, J. T. and Aukema, B. H. (2020). A guide and toolbox to replicability and open science in entomology. *Journal of Insect Science* 20, 6.