In this issue i–iii

Hoppeler, H. and Flück, M. Normal mammalian skeletal muscle and its phenotypic plasticity. 2143–2152

Askew, G. N. and Marsh, R. L. Muscle designed for maximum short-term power output: quail flight muscle. 2153–2160

Jürgens, K. D. Etruscan shrew muscle: the consequences of being small. 2161–2166


Conley, K. E. and Lindstedt, S. L. Energy-saving mechanisms in muscle: the minimization strategy. 2175–2181

Connaughton, M. A., Fine, M. L. and Taylor, M. H. Weakfish sonic muscle: influence of size, temperature and season. 2183–2188

Schachat, F. and Briggs, M. M. Phylogenetic implications of the superfast myosin in extraocular muscles. 2189–2201

Hoh, J. F. Y. ‘Superfast’ or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. 2203–2210

Lindstedt, S. L., Reich, T. E., Keim, P. and LaStayo, P. C. Do muscles function as adaptable locomotor springs? 2211–2216

Pörtner, H. O. Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. 2217–2230

Watabe, S. Temperature plasticity of contractile proteins in fish muscle. 2231–2236

Guderley, H. and St-Pierre, J. Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. 2237–2249

Katz, S. L. Design of heterothermic muscle in fish. 2251–2266


Schrauwen, P. and Hesselink, M. UCP2 and UCP3 in muscle controlling body metabolism. 2275–2285

Boutilier, R. G. and St-Pierre, J. Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression. 2287–2296

Hudson, N. J. and Franklin, C. E. Maintaining muscle mass during extended disuse: aestivating frogs as a model species. 2297–2303

Johnston, I. A. and Temple, G. K. Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. 2305–2322