

Fig. S1. Mean vector circular plots for all individuals. Saccades occur primarily during pectoral fin abduction. In each of the 12 individuals, the mean vector R (black bar) points in the direction around which the saccades are concentrated (N=12); the length of R represents the degree of concentration of saccades on a scale of 0 to 1. The bold arc along each plot's circumference is the 95% confidence interval around the mean-vector direction. Time begins arbitrarily at fin adduction at (1,0) and moves counterclockwise, as shown by the small arrow. Fish diagrams illustrate approximate fin positions. ABD, abduction; ADD, adduction; REF, refractory phase.

Table S1. Results of circular statistics for each of the 12 individuals and across individuals (grand mean).

fish	N	R	Р	
individual means				
1	12	0.596	0.011	*
2	12	0.406	0.139	NS
3	12	0.793	< 0.001	***
4	12	0.659	0.003	**
5	12	0.815	< 0.001	***
6	12	0.830	< 0.001	***
7	12	0.794	< 0.001	***
8	12	0.645	0.005	**
9	12	0.786	< 0.001	***
10	12	0.594	0.012	*
11	12	0.701	0.001	**
12	12	0.732	< 0.001	***
grand mean				
all	12	1.000	< 0.001	***
*, P<0.05; **, P<0.01; ***, P<0.001				