Table S1

Click here to Download Table S1

Script S1. R Scripts for statistical analysis

library(QuantPsyc)
library(boot)
library(car)
library(ggplot2)
library(devtools)
source_gist("524eade46135f6348140")
library(gdata)
library(phia)
library(nlme)
library(Ime4)
library(Ismeans)
library(compute.es);
library(Hmisc);
library(multcomp);
library(pastecs);
library(reshape);
library(WRS)
library(outliers)
#Install packages before running library() commands
#1. Correlation analyses for Supplementary Figs. S1, S2.
data <- read.csv("DATAFILE.csv", header = TRUE) #Read datafile into memory, file contains data for all treatments & time-points
shapiro.test(data\$VARIABLE) # Testing for normality
cor.test(data\$VARIABLE1,data\$VARIABLE2, use = "complete.obs", method = "pearson") #Pearson's correlation analysis, where <variable1> and <variable2> are the column-headings of interest.</variable2></variable1>
#2. Multivariate analysis of variance for Figs. 2B, C, D.
data <- read.csv("PostPreconditioningRaw.csv", header = TRUE) #Read datafile into memory, file contains rawdata for post-preconditioning anemones ("PostPreconditioningRaw" worksheet)

leveneTest(VARIABLE ~ Treatment, data = data) # Homogeneity of variance test, repeat for each variable.

tapply(data\$VARIABLE, data\$VARIABLE, shapiro.test) # Testing for normality, repeat for each variable.

#Run the first MANOVA analysis - Raw data

multimod <- manova(cbind(log10(P.R), SymDensity, DR, Pgross, HostCS, sqrt(HostNQO), HostSDH, sqrt(HostCCO), SymCS, SymSDH, HostSOD) ~ Treatment, data = data)

summary(multimod, test = "Pillai")

summary.aov(multimod)

#Run the second MANOVA analysis - mETC complex activities normalised to CS activity.

multimod <- manova(cbind(HostSDH.CS, HostNQO.CS, HostCCO.CS, 1/sqrt(SymSDH.CS)) ~ Treatment, data = data)

summary(multimod, test = "Pillai")

summary.aov(multimod)

#3. Linear Mixed Model Analyses for data in Fig. 3, 4, 5, 6B

data <- read.csv("HeatExptFvFm.csv", header = TRUE) #Read datafile into memory, file contains raw Fv/Fm data for anemones during acute heating experiment ("HeatExptFvFm" worksheet)

data\$Day <- as.factor(data\$Day) #Set numeric "Day" column as factor

tapply(data\$FvFm, data\$Day:data\$Treatment, shapiro.test) #Test for normality

leveneTest(FvFm ~ Day*Treatment, data = data) #Test for homogeneity of variance

baseline <- lme(FvFm $^{\sim}$ 1, random = $^{\sim}$ 1 | Bowl/Day, data = data, method = "ML", na.action = na.exclude) #Create baseline model, random effect of replicate only, Day defined as within-subjects factor.

dayM <- update(baseline, .~. + Day)

treatmentM <- update(dayM, .~. + Treatment)

day_treatment <- update(treatmentM, .~. + Day:Treatment)</pre>

anova(baseline, dayM, treatmentM, day treatment) #Test model fits

#Run exploratory analysis on model residuals. Plot histogram of residuals to confirm normal distribution.

plot(day_treatment)

plot(day_treatment, SOD1 ~ fitted(.) | Treatment, abline = c(0,1))

```
qqnorm(day_treatment,~resid(.)|Day)
```

qqnorm(day_treatment,~resid(.)|Treatment)

hist((resid(day_treatment) - mean(resid(day_treatment), na.rm=T)) / sd(resid(day_treatment), na.rm=T) / sd(resid(day_treatment), na.rm=

anova(day_treatment) #Get ANOVA table for best-fitting model (lowest AIC value), assuming residuals are normally distributed.

summary(glht(day_treatment, lsm(pairwise ~ Treatment|Day, adjust="tukey"))) #Post hoc pairwise comparisons.

data <- read.csv("HeatExpt.csv", header = TRUE) #Read datafile into memory, file contains raw data for anemones during acute heating experiment ("HeatExptFvFm" worksheet)

#Repeat the Linear Mixed Model analyses for each variable of interest.

naive <- subset(data, Treatment == "NV") #Select data for naive anemones</pre>

#4. Multiple regression analyses testing the effect of treatment on the relationship between host NQO and host CCO (Fig. 6A)

data <- read.csv("HeatExpt.csv", header = TRUE) #Read datafile into memory, file contains raw data for anemones during acute heating experiment ("HeatExpt" worksheet)

#Subset treatment groups data

preconditioned <- subset(data, Treatment == "PC") #Select data for preconditioned anemones
control <- subset(data, Treatment == "CT") #Select data for control anemones</pre>

#Pearson's correlation analyses for Host NQO / Host CCO activity for each treatment group.
cor.test(preconditioned\$HostNQO, preconditioned\$HostCCO, use = "complete.obs", method =
"pearson")

#Linear regression analyses of HostNQO and Treatment as predictors of Host CCO regression <- $Im(HostCCO \sim HostNQO + Treatment + HostNQO*Treatment, data = data, na.action = na.exclude)$

anova(regression)

Fig. S1. Pearson's correlation analysis of the relationship between holobiont dark respiration (DR) and host (**A**) citrate synthase (CS) activity, (**B**) NADH:coenzyme Q oxidoreductase (NQO) activity, (**C**) succinate dehydrogenase (SDH) activity, and (**D**) cytochrome *c* oxidase (COx) activity in *Exaiptasia pallida* anemones. All data are natural log-transformed. Panel **E**) Oxidised (brown) and (**F**) reduced (pink) cytochrome *c* (1 mM in 20 mM KPi buffer, pH 7.0).

Fig. S2. Pearson's correlation analysis of the relationship between host citrate synthase (CS) activity and (**A**) NADH:coenzyme Q oxidoreductase (NQO) activity, (**B**) succinate dehydrogenase (SDH) activity, and (**C**) cytochrome *c* oxidase (COx) activity. Panel **D**) Relationship between *Symbiodinium* CS and SDH activities. All data are natural log-transformed.