Table S1. Results of two-way ANOVAs to evaluate the effect of diet, age and their interaction on maltasic activity and AG mRNA of ZEBF and HOSP, respectively.

Measurement					
Maltase activity					
	Species				
	ZEBF	Source of Variation	df	\boldsymbol{F}	P-value
	(n=34)				
		Age	3	10.88	0.0001
		Diet	1	0.36	0.5564
		Interaction	3	0.21	0.8923
		Error	26		
		Total	33		
	HOSP	Source of Variation	df	\boldsymbol{F}	P-value
	(n=52)				
		Age	4	26.91	0.0001
		Diet	1	22.74	0.0001
		Interaction	4	5.38	0.0014
		Error	42		
		Total	51		
AG mRNA level					
	Species				
	ZEBF	Source of Variation	df	$\boldsymbol{\mathit{F}}$	P-value
	(n=35)				
		Age	3	1.75	0.18
		Diet	1	0.25	0.62
		Interaction	3	1.37	0.27
		Error	27		
		Total	34		
	HOSP	Source of Variation	df	F	P-value
	(n=48)		v		
	` /	Age	4	5.36	0.0016
		Diet	1	17.01	0.0002
		Interaction	4	5.48	0.0014
		Error	38		
		Total	47		

Fig. S1. Body mass (A) and small intestine mass (B) in zebra finch nestlings as a function of age (days post hatch) and as compared to adults. In this preliminary study, the birds received daily a mixture of seeds and bird food and fresh water *ad libitum*, and every other day a specially prepared egg food to support growth and reproduction. Each point is an individual bird.

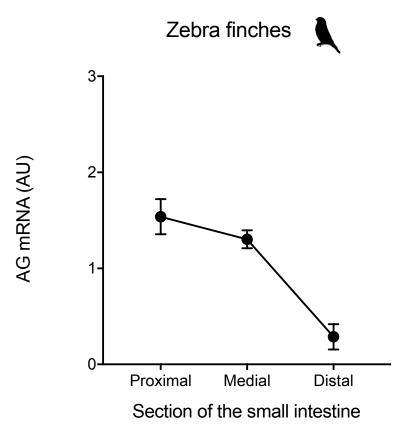


Fig. S2. Amount of intestinal AG mRNA as a function of intestinal position in adult Zebra finches. AG mRNA differed with intestinal position ($F_{2,13.9}$ =22.49, P<0.0001) and was significantly lower in distal intestine (P<0.05) than in either of the more proximal regions, which did not differ from each other (P=0.18). Data for 11 birds eating either diets MS or HS were pooled because AG mRNA did not differ as a function of diet (P=0.17).